If there is a chance fusion takes place everywhere in the sun. Even at lower probability. Then why not analyze the surface being the coldest? What are the requirements?

# Machine Learning – Should Decision Based Systems Generate Readable Thought Strings?

My idea is simple.

I think it would be better if decision based machine learning systems generate their own “thought” strings. That is. Text strings that are reflective of the instructions to itself. I think this is better than to rely on low level weight information. Even though its all supervised learning.

I mean error checking would be much easier than to retrain the whole system.

# Part Of A Livelihood Kit – Computer With Offline/Online Courses

# Idea – The Universe Fractal

My idea is simple.

The Mandelbrot set is just the numbers that don’t diverge when the output is recycled. I see that like a filter. Then could some part of the structure of the universe be like a fractal. A filter of some equation.

I belive the filter comes from all the physical laws. The universe is shaped by the mass and energy that don’t diverge from those physical equations. That is. The universe selected energy and matter that survived its laws or truths.

# Math Idea – Derivative similarity

My idea is simple.

Inspired by e^x where the derivative is equal to e^x. I cold guess that maybe there should exist something like ’derivative similarity’.

So I will test a machine learning approach to this. I will start with some function and take the derivative of it. Place 2 derivatives and the function in separate series. Label the samples coming from f,df,df2.

After learning the function and its first and second derivative I will If I’m successful see what happens when I try to maximize prob[0]+prob[2]. That I want to see if there is a function that has a second derivative but no first derivative. Sounds crazy. Probably is. : ).

Well I think there is a lot to be tested with machine learning.

Here I calculated something that maybe can be called continous derivate. Ex. D(.25)(f(x))

# Machine Learning Idea – Could The Weight Matrices That Corresponds To The Mean Filtered Training Samples Be Good Starting Values?

I wonder. Could the weight matrices that corresponds to the mean filtered training samples be good starting values?

I mean. It should be easier to correct a ?generalized starting image than to begin from scratch with random noise.

So my idea is to calculate and train on mean summarized collections of the input samples. Here I will use an extra label. Then use those converged weights as starting values. For when you want to generate.

So when I want to generate an image from label 2. I will try with the weight matrices from the mean calculation. Then let the algorithm work itself to an image that looks like label 2 from the extra label. That is from the mean filtered solution image to the image that looks like coming from label 2.

# Project Idea Machine Learning – Differentiated Noise Level Learning

The idea is simple.

For generative machine learning. I wonder if you can use a classifier and evaluate the probabilities that the sample belongs to different categories of noise levels.

That is. You precompute samples with different levels of noise and label them accordingly. So you have samples with 0% noise 10%noise 20%noise … 100%noise labels.

A fast way to precompute is just to add random noise of a certain % amount to the image or sample.

The reason for this approach is that I think getting to a generated sample of 0% noise gets faster if the algorithm can ”think” or recognize a little improvement in the noise level.

# Idea – Internal Fitness In A ?Deep Genetic Algorithm.

From what I can see. A genetic algorithm generates a lot of guesses. This makes it kind of slow. So I wonder. What is the effectiveness of the guesses.

Could the random number generator be improved. So that you get quality input to choose from. Not just choose the best choice from low quality input.

The way I see it is that random numbers are just samples that can be taken from a ?2D image. Then the problem is just to generate a good image. I think the image should look diverse.

From this I wonder. Does there exist a deep genetic algorithm with internal fitness or score values from each layer.

With this I think you get smart random.

# Idea – Music Enhanced Knowledge Delivery With A Feeling Dimension

Inspired psy trance. Why not try to deliver concepts of mathematics, philosophy, programming and physics through music.

By concepts I mean the hard to understand or important truths that when you understand them a little generates feelings and new thoughts.

If you think of the brain as using all sorts of inspiring data to generate understanding thoughts. Then expanding concepts which are very compressed pieces of information to include music and their accompanying feelings is important.

In the very least. Music enhanced knowledge should help you remember better because of the generated feelings. Much like you remember the music of your youth.

# Guess – Could The Future Internet Involve Teleportation Of Radio Waves?

# Project – Generate A 3D Object (Evolution And Machine Learning)

I will try to generate a 3D object from first training on a 3D object and then generating similar objects. To reconnect with one of my first blog posts. That about evolution and machine learning.

After my first attempt. The algorithm stumped. To many possible points. Then I remembered that blender had something of a flat 2D image that could be turned into a 3D object. I will try this. I hope I remember correctly. Havent found what Im looking for yet.

Still I hope this will make the problem much easier. A 2D image is a lot easier to generate than a 3d volume.

Something I think can be interesting is if **machine learning can be used to** **create high detailed displacement maps**. Because these would only need to be realistic looking. Creating lines and bumps might be possible and very effective.

**Come to think of it. Generating textures should not be a problem. Any texture.**

You just replace the images of digits with images of different textures of wood, stone, skin and more. Then let the machine learning classifier recognize the different textures. That is. Put a number on each type of texture. Then use a genetic algorithm to generate an image with a perticular id number as the target. You just generate until the system says its 99% sure its texture id #. That from any random start.

# Reminder – Why Not Use A Genetic Algorithm For Machine Learning Generation

Just a quick idea. I thought I use pyevolve ( genetic algorithm – python module ) to see if I could generate an image from a machine learning network. I thought I have a classifier which I would get some real valued number from (going to strip the binary function in the end). This indication is going into the genetic algorithm as a score. Then the algorthm generates new guesses which will be selected from.

Its my project for this time.

Have not got around to testing. But I found out something interesting. Using the handwritten digits I manage to get much better accuracy for the digit recognition from adding noise digits and classifying them as their own special number.

Thats is. I added 180 numpy.random.rand(8,8) matrices to the digits random images. After training. The 180 random images were recognized as the number 77 and the other numbers got better at their recognition.

# Super Idea – Increase Your Machine Learning Weight Matrices “Infinitely”

My idea is simple.

If you train the parameters of the machine learning setup using a genetic algorithm you can put in almost anything in the system.

From my trial with smooth gaussian blur filters I realised that I could use the weights as parameters for a 2D spline function. From this I get pretty much any size of a weight matrix for free.

Because I believe you need to noise filter the weights. Its ridiculus to have so much gradient supporting weights. Just use a spline function or 2D spline surface.

# Market Idea – Easy Repairable Smartphone (Pop Replace Screens)?

The other day I was at the local IT-shop. The other customer there wanted to repair his mobile. Actually the screen was cracked.

So come to mind that maybe customers should have the option to choose easily repairable phones.

So what I propose is an interchangeable screen. So when it cracks. You just pop it out like a battery and replace the screen. Here you could select different screens based on color appearance and resolution.

# Idea – The Genetic Perceptron (Machine Learning)

My idea is simple.

Just calculate the weights of ?any multilayerd perceptron using a genetic algorithm. // Per Lindholm

Looking at the many different activation functions. I wonder. Calculating the weights with a genetic algorithm should also allow for optimized activation functions. So I will test a spline activation function which I will calculate the weights for.

# Idea – Video Wallpaper For Linux Apps

# Idea – Make Smartphones More Personal With Custom Linux Style Themes/Interfaces

I found an easy way to customize pretty much everything. The trick was to take a screenshot of the interface. Load it in GIMP and enhance or adjust the colors. Then just color pick the new different colors.

I think there is a possibilty to use real time effect filters on the home screen for that cool effect. Maybe we could have OpenGL shaders and filters like in shadertoy as an image overlay.

Here in the example I used the pretty slow GIMP filters. But they could also work.

Just some ideas for the smartphone and for Linux distros.

# Remaining Project – Solve A PDE Or A Stiff ODE With A Genetic Algorithm

# Philosophy Physics Idea – Does There Exist A Variable Mass Subatomic Particle?

The idea is simple.

I was looking at the wikipedia article on subatomic particles. I cant say I understand it. However. Applying a little philosophy I made the guess that maybe there should exist variable mass subatomic particles. One reason is that it might be unexpected and ?hard to find out.

I mean if everything has to fit in perfectly. Its easier philosophically to have a variable to adjust. Than to have many stiff mass value that must coincide.

# Idea – Could A Noise Filter Improve Genetic Algorithms?

The idea is simple.

I was going to test if you could ”paint” with genetic algorithms. I thought it would generate good enough approximation to the target image.

That is. I set the score of the genetic algorithm to reflect the image. Then as the score got higher. The solution would get more similar to the target.

What I found was that the solution converged extremely slowly and still looked noisy.

So I wonder. If I do image noise reduction for the intermediate steps. Would the calculation converge quicker and be of better quality?

Example. Several “enfuse – Linux terminal command” stacked images of a image solution.

# Finance Inventions – Could A Rented Share System Work?

A quick idea.

To get finance to much needed inventions. Is there a possibility to take advantage of a rented share system.

Here you only rent the shares for some time. Or maybe we could have a subscription model with a monthly rent payment.

I think this would make things less complicated and people would be more willing to try it out.

# Physics Guess – Heat Noise And Fusion

If you call heat noise. Then a lot of heat is like an incompressible signal. My guess is that noise acts like a lot of signals that the fusion process can sample from. At the exact right time. Meaning that the process have all the information or circumstances that ?causes fusion.

Then if fusion is the reaction to the noise maybe it is some kind of noise filter. Maybe a low pass filter. I don’t know.

# Speculation – Does There Exist A Heat Assisted Battery Type?

I was looking for a heat aided battery when I found there was something named heat-assisted magnetic recording for harddrives.

Hmm

There might be something important here. I mean. There is heat when you charge a battery and there is heat when you discharge. In a battery you want high energy density. Likewise in a harddrive for storing a lot of information in a small area.

# Speculation – Recognition And Generation Of Freewill Realistic Actions And Timings

Even if I don’t know how freewill started I can speculate how we can understand it in its simplest form.

The simple answer is machine learning. I speculate that with machine learning you can predict,recognize and generate realistic looking actions. The difficult thing to understand is that this is also true for the timing of those actions.

So with machine learning you could generate ”**Freewill Realistic Actions**” **at timings that are also realistic**.

So when will you drink your coffee? Timing is important. People will recognize freewill actions because of how accurate and realistic the timings were.

Basically if a robot has human like timing. It will be perceived as having freewill. So is the guess anyway.